Conf. Dr. Ing. Cristina Muresan

Nr.crt.	Titlu lucrare	Scurta descriere	Cerinte	Nivel (licenta/master)
1	Automatic identification of	Modeling, parameter estimation,	System theory	Master
	process models from step	Matlab programming skills,	System identification	
	response data	testing and validation, analysis	Control engineering I/ II	
		of results. It is required to design	Matlab	
		a graphical user interface and		
		program for robust estimation of		
		a process model from highly		
		corrupted step response data		
2	Autotuners applied to a	Design of various PID	System theory	Master
	vertical take off and landing	controllers based on existing	System identification	
	system (VTOL)	autotuning methods for the	Control engineering I/ II	
		VTOL system, discrete-time	Matlab	
		implementation of standard PID		
		controller, experimental testing		
		and validation, analysis of		
		results and comparisons		
3	Fractional order autotuners	Design of various fractional	System theory	Licenta
	for a vertical take off and	order PID controllers based on	System identification	
	landing system (VTOL)	existing autotuning methods, the	Control engineering I/ II	
		discrete-time implementation of	Matlab	
		controller, experimental testing		
		and validation, analysis of		
		results and comparisons	~	
4	Predictive control of the	Analysis of the hemodynamic	System theory	Master
	hemodynamic system	system (MIMO system,	System identification	
		interaction, pairing), design of	Control engineering I/ II	
		MIMO IMC controller, discrete-	Matlab	
		time implementation, Matlab		
		simulation testing and validation,		
		analysis of results		

5	Predictive control of the	Analysis of the anaesthesia	System theory	Master
	general anaesthesia system	system, design of the predictive	System identification	
		controller, discrete-time	Control engineering I/ II	
		implementation, Matlab	Matlab	
		simulation testing and validation,		
		analysis of results		
6	Decentralised PID control of	Analysis of the hemodynamic	System theory	Licenta
	the hemodynamic system	system (MIMO system,	System identification	
		interaction, pairing), design of	Control engineering I/ II	
		decentralised PID controllers,	Matlab	
		discrete-time implementation,		
		Matlab simulation testing and		
		validation, analysis of results		
6	Decoupling PID control of	Analysis of the hemodynamic	System theory	Master
	the hemodynamic system	system (MIMO system,	System identification	
		interaction, pairing), design of	Control engineering I/ II	
		steady state decoupler, design of	Matlab	
		PID controllers, discrete-time		
		implementation, Matlab		
		simulation testing and validation,		
		analysis of results		
7	Advanced learning algorithm	Analysis and interpretation of	System Identification	Licenta
	based on individual electric	individual electric network using	System Theory	
	network	machine learning algorithms and	Python	
		system identification strategies.	Machine Learning	
			Mathematical Analysis	
			Matlab	
8	A fractional order event	Modeling, parameter estimation,	System theory	Master
	based PID controller for a	study of event based concepts	System identification	
	vertical take off and landing	and algorithms, design of PID	Control engineering I/ II	
	system	controller for the VTOL system,	Matlab	
		discrete-time implementation of	Advanced control strategies	
		standard PID controller, event		
		based implementation of the PID		

		controllers, experimental testing and validation, design of FO- PID controller for the VTOL system, discrete-time implementation of standard FO- PID controller, event based implementation of the FO-PID controller, experimental testing and validation, comparisons with PID version		
9	Fractional order IMC control of the general anaesthesia system	Analysis of the anaesthesia system, design of FO-IMC controller, discrete-time implementation, Matlab simulation testing and validation, analysis of results	System theory System identification Control engineering I/ II Matlab Advanced control strategies	Licenta
10	Decentralised PID control of general anaesthesia system	Analysis of the anaesthesia system, (MIMO system, interaction, pairing), design of decentralised PID controllers, discrete-time implementation, Matlab simulation testing and validation, analysis of results	System theory System identification Control engineering I/ II Matlab Advanced control strategies	Licenta
11	Decoupling PID control of general anaesthesia system	Analysis of the anaesthesia system (MIMO system, interaction, pairing), design of steady state decoupler, design of PID controllers discrete-time implementation, Matlab simulation testing and validation, analysis of results	System theory System identification Control engineering I/ II Matlab Advanced control strategies	Licenta
12	Towards a complete control system for general anaesthesia-hemodynamic	Analysis of the anaesthesia system, analysis of the hemodynamic system, study of	System theory Control engineering I/ II Process modeling	Master

system interaction during	the effect of surgical stimulus	Matlab	
surgery	based on clinical data, coupling		
	of the two systems with surgical		
	stimulus as disturbance, Matlab		
	simulations of various		
	scenarious, validation with		
	respect to available data,		
	analysis of the resulting MIMO		
	system		